Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry Glob Open Sci ; 3(4): 1104-1115, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881572

RESUMO

Background: A salient effect of addictive drugs is to hijack the dopamine reward system, an evolutionarily conserved driver of goal-directed behavior and learning. Reduced dopamine type 2 receptor availability in the striatum is an important pathophysiological mechanism for addiction that is both consequential and causal for other molecular, cellular, and neuronal network differences etiologic for this disorder. Here, we sought to identify gene expression changes attributable to innate low expression of the Drd2 gene in the striatum and specific to striatal indirect medium spiny neurons (iMSNs). Methods: Cre-conditional, translating ribosome affinity purification (TRAP) was used to purify and analyze the translatome (ribosome-bound messenger RNA) of iMSNs from mice with low/heterozygous or wild-type Drd2 expression in iMSNs. Complementary electrophysiological recordings and gene expression analysis of postmortem brain tissue from human cocaine users were performed. Results: Innate low expression of Drd2 in iMSNs led to differential expression of genes involved in GABA (gamma-aminobutyric acid) and cAMP (cyclic adenosine monophosphate) signaling, neural growth, lipid metabolism, neural excitability, and inflammation. Creb1 was identified as a likely upstream regulator, among others. In human brain, expression of FXYD2, a modulatory subunit of the Na/K pump, was negatively correlated with DRD2 messenger RNA expression. In iMSN-TRAP-Drd2HET mice, increased Cartpt and reduced S100a10 (p11) expression recapitulated previous observations in cocaine paradigms. Electrophysiology experiments supported a higher GABA tone in iMSN-Drd2HET mice. Conclusions: This study provides strong molecular evidence that, in addiction, inhibition by the indirect pathway is constitutively enhanced through neural growth and increased GABA signaling.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37684522

RESUMO

The transition from hedonic alcohol drinking to problematic drinking is a hallmark of alcohol use disorder that occurs only in a subset of drinkers. This transition requires long-lasting changes in the synaptic drive and the activity of striatal neurons expressing dopamine D1 receptor (D1R). The molecular mechanisms that generate vulnerability in some individuals to undergo the transition are less understood. Here, we report that the Parkinson's-related protein leucine-rich repeat kinase 2 (LRRK2) modulates striatal D1R function to affect the behavioral response to alcohol and the likelihood that mice transition to heavy, persistent alcohol drinking. Constitutive deletion of the Lrrk2 gene specifically from D1R-expressing neurons potentiated D1R signaling at the cellular and synaptic level and enhanced alcohol-related behaviors and drinking. Mice with cell-specific deletion of Lrrk2 were more prone to heavy alcohol drinking, and consumption was insensitive to punishment. These findings identify a potential novel role for LRRK2 function in the striatum in promoting resilience against heavy and persistent alcohol drinking.

3.
J Neurosci ; 43(7): 1074-1088, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796842

RESUMO

In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they implement. We argue that a pragmatic perspective of science, in which descriptive, mechanistic, and normative models and theories each play a distinct role in defining and bridging levels of abstraction, will facilitate neuroscientific practice. This analysis leads to methodological suggestions, including selecting a level of abstraction that is appropriate for a given problem, identifying transfer functions to connect models and data, and the use of models themselves as a form of experiment.


Assuntos
Neurociências , Biofísica
4.
Cell Rep ; 40(13): 111440, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170833

RESUMO

Low dopamine D2 receptor (D2R) availability in the striatum can predispose for cocaine abuse; though how low striatal D2Rs facilitate cocaine reward is unclear. Overexpression of D2Rs in striatal neurons or activation of D2Rs by acute cocaine suppresses striatal Penk mRNA. Conversely, low D2Rs in D2-striatal neurons increases striatal Penk mRNA and enkephalin peptide tone, an endogenous mu-opioid agonist. In brain slices, met-enkephalin and inhibition of enkephalin catabolism suppresses intra-striatal GABA transmission. Pairing cocaine with intra-accumbens met-enkephalin during place conditioning facilitates acquisition of preference, while mu-opioid receptor antagonist blocks preference in wild-type mice. We propose that heightened striatal enkephalin potentiates cocaine reward by suppressing intra-striatal GABA to enhance striatal output. Surprisingly, a mu-opioid receptor antagonist does not block cocaine preference in mice with low striatal D2Rs, implicating other opioid receptors. The bidirectional regulation of enkephalin by D2R activity and cocaine offers insights into mechanisms underlying the vulnerability for cocaine abuse.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Analgésicos Opioides/farmacologia , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Corpo Estriado/metabolismo , Encefalina Metionina/metabolismo , Encefalina Metionina/farmacologia , Encefalinas/metabolismo , Encefalinas/farmacologia , Camundongos , Antagonistas de Entorpecentes/metabolismo , Antagonistas de Entorpecentes/farmacologia , RNA Mensageiro/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Recompensa , Ácido gama-Aminobutírico/metabolismo
5.
J Neurosci ; 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35896424

RESUMO

There are five cloned muscarinic acetylcholine receptors (M1-M5). Of these, the muscarinic type 5 receptor (M5) is the only one localized to dopamine neurons in the ventral tegmental area and substantia nigra. Unlike M1-M4, the M5 receptor has relatively restricted expression in the brain, making it an attractive therapeutic target. Here we performed an in-depth characterization of M5-dependent potentiation of dopamine transmission in the nucleus accumbens and accompanying exploratory behaviors in male and female mice. We show that M5 receptors potentiate dopamine transmission by acting directly on the terminals within the nucleus accumbens. Using the muscarinic agonist oxotremorine, we revealed a unique concentration-response curve and a sensitivity to repeated forced swim stress or restraint stress exposure. We found that constitutive deletion of M5 receptors reduced exploration of the center of an open field while at the same time impairing normal habituation only in male mice. In addition, M5 deletion reduced exploration of salient stimuli, especially under conditions of high novelty, yet had no effect on hedonia assayed using the sucrose preference test or on stress coping strategy assayed using the forced swim test. We conclude that M5 receptors are critical for both engaging with the environment and updating behavioral output in response to environment cues, specifically in male mice. A cardinal feature of mood and anxiety disorders is withdrawal from the environment. These data indicate that boosting M5 receptor activity may be a useful therapeutic target for ameliorating these symptoms of depression and anxiety.Significance Statement:The basic physiological and behavioral functions of the muscarinic M5 receptor remain understudied. Furthermore, its presence on dopamine neurons, relatively restricted expression in the brain, and recent crystallization make it an attractive target for therapeutic development. Yet, most preclinical studies of M5 receptor function have primarily focused on substance use disorders in male rodents. Here we characterized the role of M5 receptors in potentiating dopamine transmission in the nucleus accumbens, finding impaired functioning after stress exposure. Furthermore, we show that M5 receptors can modulate exploratory behavior in a sex-specific manner, without impacting hedonic behavior. These findings further illustrate the therapeutic potential of the M5 receptor, warranting further research in the context of treating mood disorders.

6.
Cell Rep ; 39(6): 110795, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545050

RESUMO

Dopamine modulation of nucleus accumbens (NAc) circuitry is central to theories of reward seeking and reinforcement learning. Despite decades of effort, the acute dopamine actions on the NAc microcircuitry remain puzzling. Here, we dissect out the direct actions of dopamine on lateral inhibition between medium spiny neurons (MSNs) in mouse brain slices and find that they are pathway specific. Dopamine potently depresses GABAergic transmission from presynaptic dopamine D2 receptor-expressing MSNs (D2-MSNs), whereas it potentiates transmission from presynaptic dopamine D1 receptor-expressing MSNs (D1-MSNs) onto other D1-MSNs. To our surprise, presynaptic D2 receptors mediate only half of the depression induced by endogenous and exogenous dopamine. Presynaptic serotonin 5-HT1B receptors are responsible for a significant component of dopamine-induced synaptic depression. This study clarifies the mechanistic understanding of dopamine actions in the NAc by showing pathway-specific modulation of lateral inhibition and involvement of D2 and 5-HT1B receptors in dopamine depression of D2-MSN synapses.


Assuntos
Dopamina , Núcleo Accumbens , Animais , Dopamina/metabolismo , Camundongos , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Serotonina/metabolismo , Sinapses/metabolismo
7.
Nat Neurosci ; 24(11): 1601-1613, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663957

RESUMO

The persistence of negative affect in pain leads to co-morbid symptoms such as anhedonia and depression-major health issues in the United States. The neuronal circuitry and contribution of specific cellular populations underlying these behavioral adaptations remains unknown. A common characteristic of negative affect is a decrease in motivation to initiate and complete goal-directed behavior, known as anhedonia. We report that in rodents, inflammatory pain decreased the activity of ventral tegmental area (VTA) dopamine (DA) neurons, which are critical mediators of motivational states. Pain increased rostromedial tegmental nucleus inhibitory tone onto VTA DA neurons, making them less excitable. Furthermore, the decreased activity of DA neurons was associated with reduced motivation for natural rewards, consistent with anhedonia-like behavior. Selective activation of VTA DA neurons was sufficient to restore baseline motivation and hedonic responses to natural rewards. These findings reveal pain-induced adaptations within VTA DA neurons that underlie anhedonia-like behavior.


Assuntos
Adaptação Fisiológica/fisiologia , Anedonia/fisiologia , Neurônios Dopaminérgicos/metabolismo , Dor/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Condicionamento Operante/fisiologia , Neurônios Dopaminérgicos/química , Feminino , Masculino , Optogenética/métodos , Dor/genética , Ratos , Ratos Long-Evans , Ratos Transgênicos , Área Tegmentar Ventral/química
9.
Nat Neurosci ; 24(10): 1414-1428, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34385700

RESUMO

The long-range GABAergic input from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) is relatively understudied, and therefore its role in reward processing has remained unknown. In the present study, we show, in both male and female mice, that long-range GABAergic projections from the VTA to the ventral NAc shell, but not to the dorsal NAc shell or NAc core, are engaged in reward and reinforcement behavior. We show that this GABAergic projection exclusively synapses on to cholinergic interneurons (CINs) in the ventral NAc shell, thereby serving a specialized function in modulating reinforced reward behavior through the inhibition of ventral NAc shell CINs. These findings highlight the diversity in the structural and functional topography of VTA GABAergic projections, and their neuromodulatory interactions across the dorsoventral gradient of the NAc shell. They also further our understanding of neuronal circuits that are directly implicated in neuropsychiatric conditions such as depression and addiction.


Assuntos
Neurônios Colinérgicos/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Reforço Psicológico , Área Tegmentar Ventral/fisiopatologia , Ácido gama-Aminobutírico/fisiologia , Animais , Mapeamento Encefálico , Condicionamento Operante/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Feminino , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Recompensa , Autoestimulação
10.
Neuropsychopharmacology ; 46(2): 334-342, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417851

RESUMO

Fyn kinase in the dorsomedial striatum (DMS) of rodents plays a central role in mechanisms underlying excessive alcohol intake. The DMS is comprised of medium spiny neurons (MSNs) that project directly (dMSNs) or indirectly (iMSNs) to the substantia nigra. Here, we examined the cell-type specificity of Fyn's actions in alcohol use. First, we knocked down Fyn selectively in DMS dMSNs or iMSNs of mice and measured the level of alcohol consumption. We found that downregulation of Fyn in dMSNs, but not in iMSNs, reduces excessive alcohol but not saccharin intake. D1Rs are coupled to Gαs/olf, which activate cAMP signaling. To examine whether Fyn's actions are mediated through cAMP signaling, DMS dMSNs were infected with GαsDREADD, and the activation of Fyn signaling was measured following CNO treatment. We found that remote stimulation of cAMP signaling in DMS dMSNs activates Fyn and promotes the phosphorylation of the Fyn substrate, GluN2B. In contract, remote activation of GαsDREADD in DLS dMSNs did not alter Fyn signaling. We then tested whether activation of GαsDREADD in DMS dMSNs or iMSNs alters alcohol intake and observed that CNO-dependent activation of GαsDREADD in DMS dMSNs but not iMSNs increases alcohol but not saccharin intake. Finally, we examined the contribution of Fyn to GαsDREADD-dependent increase in alcohol intake, and found that systemic administration of the Fyn inhibitor, AZD0503 blocks GαsDREADD-dependent increase in alcohol consumption. Our results suggest that the cAMP-Fyn axis in the DMS dMSNs is a molecular transducer of mechanisms underlying the development of excessive alcohol consumption.


Assuntos
Corpo Estriado , Neostriado , Consumo de Bebidas Alcoólicas , Animais , Etanol , Camundongos , Transdução de Sinais
11.
Cell ; 183(7): 1986-2002.e26, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33333022

RESUMO

Serotonin plays a central role in cognition and is the target of most pharmaceuticals for psychiatric disorders. Existing drugs have limited efficacy; creation of improved versions will require better understanding of serotonergic circuitry, which has been hampered by our inability to monitor serotonin release and transport with high spatial and temporal resolution. We developed and applied a binding-pocket redesign strategy, guided by machine learning, to create a high-performance, soluble, fluorescent serotonin sensor (iSeroSnFR), enabling optical detection of millisecond-scale serotonin transients. We demonstrate that iSeroSnFR can be used to detect serotonin release in freely behaving mice during fear conditioning, social interaction, and sleep/wake transitions. We also developed a robust assay of serotonin transporter function and modulation by drugs. We expect that both machine-learning-guided binding-pocket redesign and iSeroSnFR will have broad utility for the development of other sensors and in vitro and in vivo serotonin detection, respectively.


Assuntos
Evolução Molecular Direcionada , Aprendizado de Máquina , Serotonina/metabolismo , Algoritmos , Sequência de Aminoácidos , Tonsila do Cerebelo/fisiologia , Animais , Comportamento Animal , Sítios de Ligação , Encéfalo/metabolismo , Células HEK293 , Humanos , Cinética , Modelos Lineares , Camundongos , Camundongos Endogâmicos C57BL , Fótons , Ligação Proteica , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Sono/fisiologia , Vigília/fisiologia
12.
J Neurosci ; 40(39): 7510-7522, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32859717

RESUMO

Dopamine (DA) signals in the striatum are critical for a variety of vital processes, including motivation, motor learning, and reinforcement learning. Striatal DA signals can be evoked by direct activation of inputs from midbrain DA neurons (DANs) as well as cortical and thalamic inputs to the striatum. In this study, we show that in vivo optogenetic stimulation of prelimbic (PrL) and infralimbic (IL) cortical afferents to the striatum triggers an increase in extracellular DA concentration, which coincides with elevation of striatal acetylcholine (ACh) levels. This increase is blocked by a nicotinic ACh receptor (nAChR) antagonist. Using single or dual optogenetic stimulation in brain slices from male and female mice, we compared the properties of these PrL/IL-evoked DA signals with those evoked by stimulation from midbrain DAN axonal projections. PrL/IL-evoked DA signals are undistinguishable from DAN evoked DA signals in their amplitudes and electrochemical properties. However, PrL/IL-evoked DA signals are spatially restricted and preferentially recorded in the dorsomedial striatum. PrL/IL-evoked DA signals also differ in their pharmacological properties, requiring activation of glutamate and nicotinic ACh receptors. Thus, both in vivo and in vitro results indicate that cortical evoked DA signals rely on recruitment of cholinergic interneurons, which renders DA signals less able to summate during trains of stimulation and more sensitive to both cholinergic drugs and temperature. In conclusion, cortical and midbrain inputs to the striatum evoke DA signals with unique spatial and pharmacological properties that likely shape their functional roles and behavioral relevance.SIGNIFICANCE STATEMENT Dopamine signals in the striatum play a critical role in basal ganglia function, such as reinforcement and motor learning. Different afferents to the striatum can trigger dopamine signals, but their release properties are not well understood. Further, these input-specific dopamine signals have only been studied in separate animals. Here we show that optogenetic stimulation of cortical glutamatergic afferents to the striatum triggers dopamine signals both in vivo and in vitro These afferents engage cholinergic interneurons, which drive dopamine release from dopamine neuron axons by activation of nicotinic acetylcholine receptors. We also show that cortically evoked dopamine signals have other unique properties, including spatial restriction and sensitivity to temperature changes than dopamine signals evoked by stimulation of midbrain dopamine neuron axons.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Córtex Pré-Frontal/metabolismo , Acetilcolina/metabolismo , Animais , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Potenciais Evocados , Feminino , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia
13.
Biol Psychiatry ; 87(11): 967-978, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31937415

RESUMO

BACKGROUND: A clinical hallmark of alcohol use disorder is persistent drinking despite potential adverse consequences. The ventromedial prefrontal cortex (vmPFC) and dorsomedial prefrontal cortex (dmPFC) are positioned to exert top-down control over subcortical regions, such as the nucleus accumbens shell (NAcS) and basolateral amygdala, which encode positive and negative valence of ethanol (EtOH)-related stimuli. Prior rodent studies have implicated these regions in regulation of punished EtOH self-administration (EtOH-SA). METHODS: We conducted in vivo electrophysiological recordings in mouse vmPFC and dmPFC to obtain neuronal correlates of footshock-punished EtOH-SA. Ex vivo recordings were performed in NAcS D1 receptor-expressing medium spiny neurons receiving vmPFC input to examine punishment-related plasticity in this pathway. Optogenetic photosilencing was employed to assess the functional contribution of the vmPFC, dmPFC, vmPFC projections to NAcS, or vmPFC projections to basolateral amygdala, to punished EtOH-SA. RESULTS: Punishment reduced EtOH lever pressing and elicited aborted presses (lever approach followed by rapid retraction). Neurons in the vmPFC and dmPFC exhibited phasic firing to EtOH lever presses and aborts, but only in the vmPFC was there a population-level shift in coding from lever presses to aborts with punishment. Closed-loop vmPFC, but not dmPFC, photosilencing on a postpunishment probe test negated the reduction in EtOH lever presses but not in aborts. Punishment was associated with altered plasticity at vmPFC inputs to D1 receptor-expressing medium spiny neurons in the NAcS. Photosilencing vmPFC projections to the NAcS, but not to the basolateral amygdala, partially reversed suppression of EtOH lever presses on probe testing. CONCLUSIONS: These findings demonstrate a key role for the vmPFC in regulating EtOH-SA after punishment, with implications for understanding the neural basis of compulsive drinking in alcohol use disorder.


Assuntos
Etanol , Núcleo Accumbens , Animais , Camundongos , Córtex Pré-Frontal , Punição , Autoadministração
14.
Am J Drug Alcohol Abuse ; 46(2): 167-179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31365285

RESUMO

Background: Cluster of differentiation 38 (CD38) is a transmembrane protein expressed in dopaminergic reward pathways in the brain, including the nucleus accumbens (NAc). The GG genotype of a common single nucleotide polymorphism (SNP) within CD38, rs3796863, is associated with increased social reward.Objective: Examine whether CD38 rs3796863 and Cd38 knockout (KO) are associated with reward-related neural and behavioral phenotypes.Methods: Data from four independent human studies were used to test whether rs3796863 genotype is associated with: (1) intravenous alcohol self-administration (n = 64, 30 females), (2) alcohol-stimulated dopamine (DA) release measured using 11C-raclopride positron emission tomography (n = 22 men), (3) ventral striatum (VS) response to positive feedback measured using a card guessing functional magnetic resonance imaging (fMRI) paradigm (n = 531, 276 females), and (4) resting state functional connectivity (rsfc) of the VS (n = 51, 26 females). In a fifth study, we used a mouse model to examine whether cd38 knockout influences stimulated DA release in the NAc core and dorsal striatum using fast-scanning cyclic voltammetry.Results: Relative to T allele carriers, G homozygotes at rs3796863 within CD38 were characterized by greater alcohol self-administration, alcohol-stimulated dopamine release, VS response to positive feedback, and rsfc between the VS and anterior cingulate cortex. High-frequency stimulation reduced DA release among Cd38 KO mice had reduced dopamine release in the NAc.Conclusion: Converging evidence suggests that CD38 rs3796863 genotype may increase DA-related reward response and alcohol consumption.


Assuntos
ADP-Ribosil Ciclase 1/genética , Etanol/farmacologia , Glicoproteínas de Membrana/genética , Racloprida/metabolismo , Recompensa , Estriado Ventral/fisiologia , Animais , Corpo Estriado/metabolismo , Dopamina/metabolismo , Retroalimentação , Feminino , Genótipo , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Núcleo Accumbens/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Tomografia por Emissão de Pósitrons , Autoadministração
16.
Mol Psychiatry ; 25(2): 491-505, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-29695836

RESUMO

The dorsal striatum has been linked to decision-making under conflict, but the mechanism by which striatal neurons contribute to approach-avoidance conflicts remains unclear. We hypothesized that striatopallidal dopamine D2 receptor (D2R)-expressing neurons promote avoidance, and tested this hypothesis in two exploratory approach-avoidance conflict paradigms in mice: the elevated zero maze and open field. Genetic elimination of D2Rs on striatopallidal neurons (iMSNs), but not other neural populations, increased avoidance of the open areas in both tasks, in a manner that was dissociable from global changes in movement. Population calcium activity of dorsomedial iMSNs was disrupted in mice lacking D2Rs on iMSNs, suggesting that disrupted output of iMSNs contributes to heightened avoidance behavior. Consistently, artificial disruption of iMSN output with optogenetic stimulation heightened avoidance of open areas of these tasks, while inhibition of iMSN output reduced avoidance. We conclude that dorsomedial striatal iMSNs control approach-avoidance conflicts in exploratory tasks, and highlight this neural population as a potential target for reducing avoidance in anxiety disorders.


Assuntos
Aprendizagem da Esquiva/fisiologia , Corpo Estriado/metabolismo , Neurônios/metabolismo , Animais , Transtornos de Ansiedade , Encéfalo/metabolismo , Linhagem Celular , Feminino , Substância Cinzenta/metabolismo , Hábitos , Inibição Psicológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Optogenética/métodos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transtorno de Movimento Estereotipado
17.
Mol Psychiatry ; 25(2): 506, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31366917

RESUMO

A correction to this paper has been published and can be accessed via a link at the top of the paper.

18.
Cell Rep ; 29(5): 1147-1163.e5, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665630

RESUMO

Alcohol produces both stimulant and sedative effects in humans and rodents. In humans, alcohol abuse disorder is associated with a higher stimulant and lower sedative responses to alcohol. Here, we show that this association is conserved in mice and demonstrate a causal link with another liability factor: low expression of striatal dopamine D2 receptors (D2Rs). Using transgenic mouse lines, we find that the selective loss of D2Rs on striatal medium spiny neurons enhances sensitivity to ethanol stimulation and generates resilience to ethanol sedation. These mice also display higher preference and escalation of ethanol drinking, which continues despite adverse outcomes. We find that striatal D1R activation is required for ethanol stimulation and that this signaling is enhanced in mice with low striatal D2Rs. These data demonstrate a link between two vulnerability factors for alcohol abuse and offer evidence for a mechanism in which low striatal D2Rs trigger D1R hypersensitivity, ultimately leading to compulsive-like drinking.


Assuntos
Alcoolismo/metabolismo , Corpo Estriado/metabolismo , Receptores de Dopamina D2/metabolismo , Alcoolismo/fisiopatologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Etanol/toxicidade , Deleção de Genes , Hipnóticos e Sedativos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Quinina , Receptores de Dopamina D1/metabolismo , Reflexo/efeitos dos fármacos , Transdução de Sinais
19.
J Neurosci ; 39(29): 5647-5661, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31109960

RESUMO

Cholinergic interneurons (CINs) are critical regulators of striatal network activity and output. Changes in CIN activity are thought to encode salient changes in the environment and stimulus-response-outcome associations. Here we report that the stress-associated neuropeptide corticotropin releasing factor (CRF) produces a profound and reliable increase in the spontaneous firing of CINs in both dorsal striatum and nucleus accumbens (NAc) through activation of CRF type 1 receptors, production of cAMP and reduction in spike accommodation in male mice. The increase of CIN firing by CRF results in the activation muscarinic acetylcholine receptors type 5, which mediate potentiation of dopamine transmission in the striatum. This study provides critical mechanistic insight into how CRF modulates striatal activity and dopamine transmission in the NAc to likely account for CRF facilitation of appetitive behaviors.SIGNIFICANCE STATEMENT Although the presence of CRF receptors in the dorsal and ventral striatum has been acknowledged, the cellular identity and the functional consequences of receptor activation is unknown. Here we report that striatal cholinergic interneurons express CRF-R1 receptors and are acutely activated by the neuropeptide CRF that is released in response to salient environmental stimuli. Cholinergic interneurons make <1% of the cells in the striatum but are critical regulators of the striatal circuitry and its output. CRF's fast and potent activation of cholinergic interneurons could have far reaching behavioral implications across motivated behaviors controlled by the striatum.


Assuntos
Corpo Estriado/metabolismo , Hormônio Liberador da Corticotropina/administração & dosagem , Interneurônios/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Interneurônios/química , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Receptores de Hormônio Liberador da Corticotropina/agonistas
20.
Neuropsychopharmacology ; 44(4): 805-816, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30504927

RESUMO

Vulnerability for cocaine abuse in humans is associated with low dopamine D2 receptor (D2R) availability in the striatum. The mechanisms driving this vulnerability are poorly understood. In this study, we found that downregulating D2R expression selectively in striatal indirect-pathway neurons triggers a multitude of changes in D1 receptor (D1R)-expressing direct-pathway neurons, which comprise the other main subpopulation of striatal projection neurons. These changes include a leftward shift in the dose-response to a D1-like agonist that indicates a behavioral D1R hypersensitivity, a shift from PKA to ERK intracellular signaling cascades upon D1R activation, and a reduction in the density of bridging collaterals from D1R-expressing neurons to pallidal areas. We hypothesize that the D1R hypersensitivity underlies abuse vulnerability by facilitating the behavioral responses to repeated cocaine, such as locomotor sensitization and drug self-administration. We found evidence that littermate control mice develop D1R hypersensitivity after they are sensitized to cocaine. Indeed, D1-like agonist and cocaine cross-sensitize in control littermates and this effect was potentiated in mice lacking striatal D2Rs from indirect-pathway neurons. To our surprise, mice with low striatal D2Rs acquired cocaine self-administration similarly to littermate controls and showed no significant change in motivation to take cocaine but lower seeking. These findings indicate that downregulation of striatal D2Rs triggers D1R hypersensitivity to facilitate cocaine locomotor sensitization, which by itself was not associated with greater cocaine taking or seeking under the conditions tested.


Assuntos
Sensibilização do Sistema Nervoso Central/fisiologia , Cocaína/farmacologia , Corpo Estriado/metabolismo , Locomoção/efeitos dos fármacos , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/fisiologia , Animais , Benzazepinas/farmacologia , Relação Dose-Resposta a Droga , Regulação para Baixo , Comportamento de Procura de Droga/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Knockout , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/biossíntese , Receptores de Dopamina D2/biossíntese , Autoadministração , Potenciais Sinápticos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...